Query-Adaptive Ranking with Support Vector Machines for Protein Homology Prediction
نویسندگان
چکیده
Protein homology prediction is a crucial step in templatebased protein structure prediction. The functions that rank the proteins in a database according to their homologies to a query protein is the key to the success of protein structure prediction. In terms of information retrieval, such functions are called ranking functions, and are often constructed by machine learning approaches. Different from traditional machine learning problems, the feature vectors in the ranking-function learning problem are not identically and independently distributed, since they are calculated with regard to queries and may vary greatly in statistical characteristics from query to query. At present, few existing algorithms make use of the query-dependence to improve ranking performance. This paper proposes a query-adaptive ranking-function learning algorithm for protein homology prediction. Experiments with the support vector machine (SVM) used as the benchmark learner demonstrate that the proposed algorithm can significantly improve the ranking performance of SVMs in the protein homology prediction task.
منابع مشابه
Block-Based Approaches to Learning Ranking Functions with Application to Protein Homology Prediction
In many information retrieval systems such as Web search engines and biological-sequence search engines, the ranking functions that list the search results in order of their relevances to the query are one of the most important components. In the machine learning approaches to constructing ranking-functions, the feature vectors of database items are computed based on queries and thus they are g...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملPrediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system
Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011